Abstract

ABSTRACT Al2O3-based composite ceramics have excellent high temperature performance and are ideal materials for preparing hot end components. However, poor fracture toughness and thermal shock resistance limit its applications. Based on the excellent low thermal expansion characteristics and thermal shock resistance of Al2TiO5 ceramic, different composition ratios of Al2O3/Al2TiO5 composite ceramics were prepared by directed laser deposition (DLD) technology. Effects of TiO2 doping amount on microstructure and properties of the composite ceramics were investigated. Results show that α-Al2O3 phase is discretely distributed in the continuous aluminum titanate matrix when TiO2 doping amount between 2 and 30 mol%. With the increase of TiO2 doping amount, content of Al2O3 gradually decreases and its morphology changes from cellular to dendritic. When TiO2 doping amount reaches 43.9 mol%, the microstructure transforms into fine Al2TiO5/Al6Ti2O13 eutectic structure. Property test results show that Al2O3/Al2TiO5 composite ceramics have good comprehensive mechanical properties when TiO2 doping amount between 2 and 6 mol%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.