Abstract

Hummingbirds perform a variety of agile maneuvers, and one of them is the escape maneuver, in which the birds can steer away from threats using only 3–4 wingbeats in less than 150 ms. A distinct kinematic feature that enables the escape maneuver is the rapid backward tilt of the wing stroke plane at the beginning of the maneuver. This feature results in a simultaneous nose-up pitching and backward acceleration. In this work, we investigated how the magnitude and timing of the wing stroke-plane tilt (relative to the phase of flapping cycle) affected the generation of backward thrust, lift, and pitching moment and therefore the maneuverability of escape flight. Investigations were performed using experiments on dynamically scaled robotic wings and computational fluid dynamic simulation based on a simplified harmonic wing stroke and rotation kinematics at Re = 1000 and hummingbird wing kinematics at Re ≈ 10 000. Results showed that the wing stroke-plane tilt timing exerted a strong influence on the aerodynamic force generation. Independent of the tilt magnitude, the averaged backward thrust and pitching moment were maximized when the stroke plane tilt occurred near the end of the half strokes (e.g., upstroke and downstroke). Relative to the other timings of stroke-plane tilt, the ‘optimal’ timings led to a maximal backward tilt of the total aerodynamic force during the wing upstroke; hence, the backward thrust and nose-up pitching moment increased. The ‘optimal’ timings found in this work were in good agreement with those identified in the escape maneuvers of four species of hummingbirds. Therefore, hummingbirds may use a similar strategy in the beginning of their escape maneuver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call