Abstract

Dynamical decoupling is a technique for preserving the coherence of quantum-mechanical states in the presence of a noisy environment. It uses sequences of inversion pulses to suppress the environmental perturbations by periodically refocusing them. It has been shown that different sequences of inversion pulses show vastly different performance, in particular also concerning the correction of experimental pulse imperfections. Here, we investigate specifically the role of time-reversal symmetry in the building blocks of the pulse sequence. We show that using time-symmetric building blocks often improves the performance of the sequence compared to sequences formed by time-asymmetric building blocks. Using quantum state tomography of the echoes generated by the sequences, we analyze the mechanisms that lead to loss of fidelity and show how they can be compensated by suitable concatenation of symmetry-related blocks of decoupling pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.