Abstract

Time-delays are pervasive in such real-world complex networks as social contagions and biological systems, and they radically alter the evolution of the dynamic processes in networks. We use a non-Markovian spreading threshold model to study the effects of time-delays on social contagions. Using extensive numerical simulations and theoretical analyses we find that relatively long time-delays induce a microtransition in the evolution of a fraction of recovered individuals, i.e., the fraction of recovered individuals versus time exhibits multiple phase transitions. The microtransition is sharper and more obvious when high-degree individuals have a higher probability of experiencing time-delays, and the microtransition is obscure when the time-delay distribution reaches heterogeneity. We use an edge-based compartmental theory to analyze our research and find that the theoretical results agree well with our numerical simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.