Abstract

In areas of intensive agriculture, e.g. ‘Pays de Caux’ in France, which was the study area, field observations have shown that runoff directions were modified by agricultural activities. In order to account for factors responsible for modifications of the runoff direction (roughness, tillage direction and agricultural patterns, e.g. dead furrow or dirt tracks), we constructed a discriminant function based on field observations. This function enables us to decide whether flow direction for slopes of up to 15% was imposed by slope direction or tillage direction. It can be applied to any location, provided there are known roughness, known slope intensity, known aspect and known tillage azimuth. In order to examine the effects of these agricultural activities at the catchment scale, we compared two models by analysing the same hydrological variables: the area contributing to runoff and the flow network. The first model (Topo) was built according to the runoff direction derived from a Digital Elevation Model (DEM). The second model (Tillage) was constructed by combining information from the DEM, and information from rules based on field observations or resulting from statistical analysis. For 23 basic catchments, the result of the comparison between the two models (Topo and Tillage) showed that a major part of the catchments and the drainage network was affected by modifications related to the introduction of man-made agricultural factors. For example, for 20 of 23 catchments, the runoff flows over more than 50% of the surface of such areas were produced along the direction imposed by tillage. The introduction of tillage effect brings about modifications of both the shape and size of catchments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call