Abstract
Understanding the effects of agricultural management practices on soil functionality is an ongoing challenge in environmental science and agricultural practice. In the present study we quantified the effects of changes in tillage intensity on soil physical quality and pore size distribution after 6, 10 and 23 years. At three long-term tillage experimental sites in central Europe we analysed soils under four different soil management systems: conventional mouldboard tillage; chiselling + rotary harrow; rotary harrow; and no till. These treatments differed in mechanical intensity and depth. Pore size distributions were calculated from soil water retention curves based on high-resolution measurements. Subsequently, fractions of functional pore size classes and indicators of soil physical quality were determined and compared between the treatments. In addition, we evaluated the performance of two calculation approaches for pore size distribution: (1) fitting of a smoothing cubic spline; and (2) a bimodal van Genuchten function. The parametric function yielded a higher proportion of storage pores by approximately 3–5%. The combination of multiple measurement and evaluation methods enabled detailed comparison of soil physical characteristics between different tillage treatments. No-till soils showed a distinct lack of transmissive pores and higher bulk density, but similar plant-available water capacity, compared with the other treatments. Under all soil management systems, aeration deficits were observed, emphasising the high vulnerability for compaction of silt-dominated arable soils with a low organic matter content. Hence, the design of agricultural soil management strategies on such soils needs to consider the risks of compaction as thoroughly as erosion or chemical degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.