Abstract

The effects of tilisolol, a nonselective beta-adrenoceptor blocker, on transmembrane ionic currents were studied in single guinea pig ventricular myocytes by using the whole-cell voltage clamp technique. In the absence of beta-adrenergic stimulation, 10 microM tilisolol, a concentration higher than that used in the clinical therapeutic regimen, did not affect the L-type Ca2+ current (ICa), the inwardly rectifying K+ current (IK1), or the delayed rectifying K+ current (IK). In addition, it did not induce currents through the adenosine triphosphate (ATP)-sensitive K+ channels. However, under the nonselective beta-adrenergic stimulation with 1 microM isoproterenol, 1 microM tilisolol almost completely reversed the agonist-induced increase of IK. The increase of ICa by isoproterenol was blocked only by approximately 30% with tilisolol. We concluded that, at therapeutic concentrations (0.01-0.15 microM), tilisolol is a pure beta-adrenoceptor antagonist that has no direct effects on the transmembrane ionic currents of mammalian ventricular myocytes, such as ICa, IK1, or IK. Comparison of the dose-dependent effects of tilisolol on ICa and IK suggested that tilisolol may selectively inhibit catecholamine-induced increase of IK at the therapeutic concentrations. The virtually selective inhibition of IK, leaving ICa intact, may be favorable to prevent the catecholamine-induced arrhythmia without inhibiting contraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.