Abstract

Relationships between flooding frequency, flooding duration, litter moisture levels, and litter decay rates were investigated across the natural hydrologic gradient common to intertidal salt marshes. The effects on litter decay of natural and experimental alterations of litter moisture content were assessed in both field litterbag experiments (conducted in a southern New Jersey salt marsh from 1989 to 1990) and laboratory incubations (1990). Overall, tidally mediated litter moisture content was the dominant factor controlling litter decay throughout the vegetated marsh. Rates of carbon loss were most closely related to litter moisture levels (r=0.84), which were directly related to flooding frequency (r=0.66) and duration (r=0.63). Litter moisture levels were related to elevation within the tidal range due to increasing surface levation from creekbank to high marsh (ca. 54 cm) and height of litter above the sediment surface. Carbon losses from litter of short and tall form Spartina alterniflora Loisel. and S. patens (Aiton) Muhl. along the marsh elevation gradient indicate that while some of the variations in decay rates may be due to litter type, litter moisture accounted for most of the observed variation between marsh zones and within each litter type. Mousture levels are also affected by the water retention capacity of each litter type, which may also secondarily influence decay rates. Short-term incubations of litter indicated that CO2 evolution was positively related to moisture content with negligible respiration at moisture levels below 15% (fresh mass), increasing to a maximum between 65 and 75% depending upon litter type. Since most Spartina spp. litter remains above the marsh surface where it maintains a lower moisture content than surface litter, the use of surface litterbags may overestimate rates of carbon loss in some systems. In addition, since changes in elevation of only a few centimeters had significant effects on both litter moisture levels and decay rates, slight changes in tidal regime may have important consequences for organic matter cycling in salt marshes by affecting litter decomposition processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call