Abstract
Two series of Ti (C, N)-based cermets, one with TiC addition and the other with TiN addition, were fabricated by conventional powder metallurgy technique. The initial powder particle size of the main hard phase components (Ti (C, N), TiC and TiN) was nano/submicron-sized, in order to achieve an ultra-fine grade final microstructure. The TiC and TiN addition can improve the mechanical properties of Ti (C, N)-based cermets to some degree. Ultra-fine grade Ti (C, N)-based cermets present a typical core/rim (black core and grayish rim) as well as a new kind of bright core and grayish rim structure. The average metallic constituent of this bright core is determined to be 62 at% Ti, 25 at% Mo, and 13 at% W by SEM–EDX. The bright core structure is believed to be formed during the solid state sintering stage, as extremely small Ti (C, N)/TiC/TiN particles are completely consumed by surrounding large WC and Mo 2C particles. Low carbon activity in the binder phase will result in the formation (Ni 2Mo 2W)C x intermetallic phase, and the presence of this phase plays a very important role in determining the mechanical properties of TiN addition cermets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.