Abstract

Patch-clamp experiments on transverse brainstem slices from rats were performed to study the effects of thyroliberin (10(-8) M) on the membrane potential and spontaneous activity of neurons in two areas of the respiratory center: the ventrolateral area of the solitary tract nucleus and the pre-Botzinger complex. Thyroliberin induced membrane depolarization of neurons in the respiratory center and increased their spike activity. The pattern of activity of neurons in the pre-Botzinger complex showed decreases in the time intervals between the beginnings of bursts in response to thyroliberin. In some cases, thyroliberin led to the appearance of spike activity in initially "silent" neurons; "silent" neurons in the solitary tract nucleus became tonically active, while those in the pre-Botzinger complex showed burst activity. These results provide evidence for the existence of an indirect regulatory influence for thyroliberin on respiratory center neurons, operating at the membrane level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.