Abstract

Three compounds which inhibit glucose transport in rat adipocytes have been proposed to act directly on the glucose transporter protein. We tested these proposals by examining the effects of the compounds on the stereospecific glucose uptake catalyzed by adipocyte membrane proteins after reconstitution into liposomes. Effects on the transport activity reconstituted from human erythrocyte membranes were also examined. Glucose 6-phosphate, which was suggested to inhibit the transporter noncompetitively (Foley, J.E. and Huecksteadt, T.P. (1984) Biochim. Biophys. Acta 805, 313–316), had no effect on either type of reconstituted transporter, even when present at 5 mM on both sides of the liposomal membranes. Thus, it is unlikely to act directly on the transporter. The metalloendoproteinase substrate dipeptide Cbz-Gly-Phe-NH 2, which inhibited insulin-stimulated but not basal glucose uptake in adipocytes (Aiallo, L.P., Wessling-Resnick, M. and Pilch, P.F. (1986) Biochemistry 25, 3944–3950), inhibited the reconstituted erythrocyte transporter noncompetitively with a K i of 1.5–2 mM. The inhibition of the erythrocyte transporter was identical in liposomes of soybean and egg lipid. Transport reconstituted using adipocyte membrane fractions was also inhibited by the dipeptide, with the activity from basal microsomes more sensitive than that from insulin-stimulated plasma membranes. These results indicate that the dipeptide interacts directly with the transporter, and may be a potentially useful probe for changes in transporter structure accompanying insulin action. Phenylarsine oxide, which was suggested to act directly on the adipocyte transporter (Douen, A.G., and Jones, M.N. (1988) Biochim. Biophys. Acta 968, 109–118), produced only slight (about 10%) inhibition of the reconstituted adipocyte and erythrocyte transporters, even when present at 100–200 μM and after 30 min of pretreatment. These results suggest that the major actions of phenylarsine oxide observed in adipocytes are not direct effects on the transporter, but rather effects on the pathways by which insulin regulates glucose transport activity (Frost, S.C. and Lane, M.D. (1985) J. Biol. Chem. 260, 2646–2652).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call