Abstract

Developing state-of-the-art bipolar plate structures, to optimize fluid distribution, is essential to achieve better cell performance. In this paper, a three-dimensional model of PEMFC is developed and two cathode-side flow field structures are designed: two-dimensional and three-dimensional types. The two-dimensional type is the traditional “bipolar plate + gas diffusion layer” flow field structure, easily resulting in uneven distribution of reactant gas and other problems. This study describes three novel three-dimensional type flow fields (metal foam, fine-mesh, and wire-mesh). Through comprehensive performance analysis using numerical simulations, it is found that the three-dimensional type flow fields significantly improve mass transfer and output performance compared to two-dimensional type flow fields. The proposed three-dimensional type flow fields create forced convective fluid flow. It further enhances the diffusion dispersion of reactant gas, thus making fuller use of the active region. Among them, the wire-mesh flow field shows the best performance in terms of oxygen distribution, water distribution and electrical properties. The net output power density produced is 0.75068 W cm−2, higher than parallel flow field by 32.78%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call