Abstract
In this article, the effects of thermodiffusion of nanoparticles and solute in binary nanofluids and nanoparticles on the convective instabilities of a binary nanofluid is theoretically investigated. Thermodiffusion implies that mass diffusion is induced by thermal gradient, which is the so-called Soret effect. In order to analyze the convective instabilities of a binary nanofluid, a new stability criterion is obtained based on the linear stability theory and new factors g and f are proposed. The results show that the Soret effect of solute makes the binary nanofluids unstable significantly and the convective motion in a binary nanofluid sets in easily as the ratio of Soret coefficient of nanofluid to that of binary basefluid δ4 increases for δ4 > −1. It is also found that with an increase of the volume fraction of nanoparticles, the nanofluid becomes stable, but at or near ψ bf = − 0.3 the state of nanofluid changes from stable to unstable. The results from the addition factor analysis show that an asymptotic point of ψ bf where the maximum value of g diverges infinitely exists in the range of − 1.2 < ψ bf < − 1.1 with given conditions. The binary addition factor g is always higher than the normal addition factor f, which means that the heat transfer enhancement by the Soret effect in binary nanofluids is more significant than that in normal nanofluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nanoscale and Microscale Thermophysical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.