Abstract

Quantum-well intermixing (QWI) technology is commonly considered as an effective methodology to tune the post-growth bandgap energy of semiconductor composites for electronic applications in diode lasers and photonic integrated devices. However, the specific influencing mechanism of the interfacial strain introduced by the dielectric-layer-modulated multiple quantum well (MQW) structures on the photoluminescence (PL) property and interfacial quality still remains unclear. Therefore, in the present study, different thicknesses of SiO2-layer samples were coated and then annealed under high temperature to introduce interfacial strain and enhance atomic interdiffusion at the barrier-well interfaces. Based on the optical and microstructural experimental test results, it was found that the SiO2 capping thickness played a positive role in driving the blueshift of the PL peak, leading to a widely tunable PL emission for post-growth MQWs. After annealing, the blueshift in the InGaAs/AlGaAs MQW structures was found to increase with increased thickness of the SiO2 layer, and the largest blueshift of 30 eV was obtained in the sample covered with a 600 nm thick SiO2 layer that was annealed at 850 °C for 180 s. Additionally, significant well-width fluctuations were observed at the MQW interface after intermixing, due to the interfacial strain introduced by the thermal mismatch between SiO2 and GaAs, which enhanced the inhomogeneous diffusion rate of interfacial atoms. Thus, it can be demonstrated that the introduction of appropriate interfacial strain in the QWI process is of great significance for the regulation of MQW band structure as well as the control of interfacial quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.