Abstract
We report the fabrication of efficient, buried diffraction gratings and micro-craters in bulk polystyrene using femtosecond laser direct writing technique. We recorded a maximum diffraction efficiency of 10% for a buried grating fabricated at 1 μJ energy, 1 mm/s speed, and a period of 30 μm. Buried micro-craters, with typical dimensions of ∼2 μm, were achieved at low energies and high scanning speeds. From the field emission scanning electron microscope studies, the observed emission is attributed as due to the inner surface modifications and the debris settled around the voids. The fabricated gratings subjected to heat treatment were tested for the diffraction efficiency and emission at different excitation wavelengths and the observed results are presented. Raman spectra collected from the femtosecond laser modified regions revealed the disappearance of few Raman modes at high peak intensities associated with incident Gaussian laser pulse. Potential applications of these luminescent micro-craters are highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.