Abstract
In this research, our main idea was to apply thermal processing by nanofluids instead of conventional pasteurization processes, to shorten duration of thermal procedure and improve nutritional contents of fruit juices. Three different variables of temperature (70, 80 and 90°C), nanofluid concentration (0, 2 and 4%) and time (30, 60 and 90s) were selected for thermal processing of tomato juices by a shell and tube heat exchanger. The results demonstrated that 4% nanofluid concentration, at 30°C for 30s could result in 66% vitamin C retention of fresh juice while it was about 56% for the minimum nanofluid concentration and maximum temperature and time. Higher nanoparticle concentrations made tomato juices that require lowered thermal durations, because of better heat transfer to the product, and total phenolic compounds dwindle less severely; In fact, after 30s thermal processing at 70°C with 0 and 4% nanoparticles, total phenolic compounds were maintained by 71.9 and 73.6%, respectively. The range of total soluble solids for processed tomato juices was 5.4-5.6, meaning that nanofluid thermal processing could preserve the natural condition of tomato juices successfully. Based on the indices considered, a nanofluid thermal processing with 4% nanoparticle concentration at the temperature of 70°C for 30s will result in the best nutritional contents of final tomato juices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.