Abstract

The author investigates the onset of patterns in vertically oscillated layers of dissipative particles using numerical solutions of continuum equations to Navier-Stokes order. Above a critical accelerational amplitude of the cell, standing waves form stripe patterns which oscillate subharmonically with respect to the cell. Continuum simulations neglecting interparticle friction yield pattern wavelengths consistent with experiments using frictional particles. However, the critical acceleration for standing-wave formation is approximately 10% lower in continuum simulations without added noise than in molecular-dynamics simulations. This Brief Report incorporates fluctuating hydrodynamics theory into continuum simulations by adding noise terms with no fit parameters; this modification yields a critical acceleration in agreement with molecular-dynamics simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.