Abstract

SiC polytypes have been studied for decades, both experimentally and with atomistic simulations, yet no consensus has been reached on the factors that determine their stability and growth. Proposed governing factors are temperature-dependent differences in the bulk energy, biaxial strain induced through point defects, and surface properties. In this work, we investigate the thermodynamic stability of the 3C, 2H, 4H, and 6H polytypes with density functional theory (DFT) calculations. The small differences of the bulk energies between the polytypes can lead to intricate changes in their energetic ordering depending on the computational method. Therefore, we employ and compare various DFT codes, i.e., vasp, cp2k, and fhi-aims; exchange-correlation functionals, i.e., LDA, PBE, PBEsol, PW91, HSE06, SCAN, and RTPSS; and nine different van der Waals (vdW) corrections. At $T=0$ K, 4H-SiC is marginally more stable than 3C-SiC, and the stability further increases with temperature by including entropic effects from lattice vibrations. Neither the most advanced vdW corrections nor strain on the lattice have a significant effect on the relative polytype stability. We further investigate the energies of the (0001) polytype surfaces that are commonly exposed during epitaxial growth. For Si-terminated surfaces, we find 3C-SiC to be significantly more stable than 4H-SiC. We conclude that the difference in surface energy is likely the driving force for 3C-nucleation, whereas the difference in the bulk thermodynamic stability slightly favors the 4H and 6H polytypes. In order to describe the polytype stability during crystal growth correctly, it is thus crucial to take into account both of these effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call