Abstract

Effects of thermal dispersion on heat transfer and temperature field within cross-flow tubular heat exchangers are investigated both analytically and numerically, exploiting the volume averaging theory in porous media. Thermal dispersion caused by fluid mixing due to the presence of the obstacles plays an important role in enhancing heat transfer. Therefore, it must be taken into account for accurate estimations of the exit temperature and total heat transfer rate. It is shown that the thermal dispersion coefficient is inversely proportional to the interstitial heat transfer coefficient. The present analysis reveals that conventional estimations without consideration of the thermal dispersion result in errors in the fluid temperature development and underestimation of the total heat transfer rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call