Abstract

Effects of thermal cycling in a reducing (deuterium) atmosphere on the structure and chemistry of Cr/Cu/Cr/polyimide (PI)/Si and Au/Cu/Ti/polyimide (PI)/Si multilayer systems have been studied. In the Cr/PI system the interface between the Cr and PI was sharp and distinct in the as-deposited state, and after the anneal in the reducing atmosphere. Tensile cracks through the Cr/Cu/Cr layers were found after annealing and are the result of thermal stresses. No evidence for significant diffusion of Cr into the PI was found. In the Ti/PI system, the interface between the Ti and PI was sharp in the as-deposited state. After annealing in vacuum and in the reducing environment, regions of the interface between the Ti layer and the PI were converted to an oxide, Ti5O9. Annealing in the deuterium environment also caused delamination of the Ti film from the PI and blistering of the metal in the sample interior. No significant diffusion of the Ti into the PI was detected. In both systems, the metal in contact with the PI acted as a barrier to the diffusion of Cu into the PI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call