Abstract

In this study we report the optical, spectroscopic, and structural properties of vacuum deposited tris (8-hydroxyquinolinate) gallium film upon thermal annealing in the temperature range from 85 °C to 255 °C under a flowing nitrogen gas for 10 min. The optical UV–vis–NIR and luminescence spectroscopy measurements were performed to estimate the absorption bands, optical energy gap ( E g ), and photoluminescence (PL) of the films. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) techniques were used to probe the spectroscopic and structural nature of the films. We show that, by annealing the films from 85 °C to 235 °C, it is possible to achieve an enhanced absorption and increased photoluminescence to five times stronger than that of the pristine film. The PL quenching at 255 °C was attributed to the presence of plainer chains allow easy going for excitons to a long distance due to the crystalline region formation of α-Gaq3 polymorph. The reduction in E g and infrared absorption bands upon annealing were referred to the enhancement in π–π interchain interaction and conformational changes by re-arrangement of the Gaq3 quinolinate ligands, respectively. Stokes shift for the films were observed and calculated. From the differential scanning calorimetry, DSC measurements, higher glass transition temperature was observed for Gaq3 ( T g = 182 °C) compared to that of Alq3 ( T g = 173 °C), which suggests the existence of stronger dipolar interaction in Gaq3 due to the Ga 3+ cation effect, in comparison to that of Alq3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.