Abstract

The structural stability of Sn-3.7wt.%Ag-0.9wt.%Zn-1wt.%In solder was explored by thermal aging at 473 K. According to the microstructural observations, the high cooling rate (about 10 2 K/s) applied to the water-cooled specimens prompted the formation of β-Sn dendrites and inhibited the formation of the AgZn phase. After annealing for 20 h and 50 h, the corresponding microstructure changed significantly, especially the morphology of the intermetallic compounds (IMCs) in the slowly cooled solder. IMC particles grew in order to minimize the system energy. In addition, β-Sn dendrites grew coarser as the IMCs segregated along their grain boundaries in the water-cooled solder. Furthermore, the Ag-Zn IMCs were suppressed in the water-cooled Sn-Ag-Zn-In solder. It is suggested that coarsening of the microstructure led to significant softening during annealing of the investigated Sn-Ag-Zn-In alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.