Abstract

AbstractThe effects of elevated temperature aging on the microstructural changes of isotactic polypropylene matrix in a composite have been studied using wide‐angle X‐ray scattering (WAXS) and Fourier‐transform infrared spectroscopy (FTIR). The objective was to quantify small and slow changes in crystallinity due to thermal aging. To minimize sample variability, polypropylene resin was extracted from the molded composite plaque. Changes in crystallinity level and crystalline form were detected using WAXS after prolonged aging at 90 and 140°C. FTIR was utilized to monitor in‐situ crystallinity changes and to detect oxidation products due to thermal decomposition. The level of crystallinity was monitored by changes in the absorbance ratio of A997/A973 and A841/A973; the former ratio was found to be more sensitive for detecting crystallinity changes. Aging at 140°C resulted in oxidation. The kinetics of secondary crystallization for the aging conditions studied was characterized using Avrami plots. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.