Abstract

In this study, dextran-coated polyvinyl formal (PVF) sponges with high water-holding capability were developed to increase the osteogenic response in the PVF sponge. The study aimed to estimate the effect of the increased water-holding capability of the sponges on osteogenic capacity at a bone defect site in the rabbit femur epiphysis. Bone formation was evaluated using radiography, microcomputed tomography (CT), and histological analysis at 2, 4, and 6 weeks after implantation. As shown by radiography and micro-CT findings, the dextran-coated PVF sponge without water-holding capability showed little bone formation at all evaluated time points. However, the dextran-coated PVF sponge with high water-holding capability showed increasing bone formation around the implant at 4 and 6 weeks after implantation. Furthermore, as shown by micro-CT quantitative analysis, the grafted PVF sponge with high water-holding capability showed significantly greater values for percentage of bone volume per total volume and mean bone mineral density compared with the grafted PVF sponge without water-holding capability at 4 and 6 weeks after implantation. These results suggest that the dextran-coated PVF sponge with high water-holding capability promoted osteogenesis in vivo. The PVF sponge might be a new biomaterial to be used as a fill material for bone defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.