Abstract

The volatile anesthetic halothane, when present at fertilization, dose-dependently increases the incidence of abnormally developing sea urchin embryos at the first cell division. Microscopic examinations of eggs stained with aceto-orcein or the DNA fluorochrome bisbenzimide and direct observations on isolated sperm aster complexes show that halothane induces polyspermy (multiple sperm entry) when present at fertilization. Experimental evidence suggests that anesthetic-induced polyspermy involves impairment of both the fast (electrically mediated) and slow (morphological) blocks to multiple sperm entry. These observations clearly show that relatively brief exposures to halothane at fertilization cause polyspermy and that this effect is almost certainly responsible for the ensuing abnormal development observed at the first cell division.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call