Abstract

The transesterification of vegetable oils results in methyl esters of fatty acid, known as biodiesel. This one presents similar features of diesel oil, such as cetane number, specific weight, heat of combustion and air-fuel ratio. However, arising problems from its higher viscosity leads to a poor spraying by the fuel injectors and so to a low-grade combustion, causing formation of undesirable deposits inside the engine, changes in the properties of the lubricating oil and in the composition of the exhaust gas. Owing to this issue, it is necessary to study an additive able to make biodiesel characteristics more appropriate to be used in compression ignition engines, as well as a monitoring of changes in exhaust gas composition. The chosen additive was d-limonene, a monocyclic terpene obtained as a byproduct of citriculture. This paper presents the preliminary results obtained from the tests in a stationary diesel engine fuelled with mixtures of diesel-biodiesel and d-limonene, in different concentrations, comparing to regular diesel fuel. Although it was used in low concentrations, the additive was efficient in the reduction of hydrocarbons, carbon monoxide and opacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call