Abstract

Ischemia leads to intracellular acidification which can be counteracted by the Na+/H+-exchange mechanism. A blockade of this exchanger has been hypothesized to cause stronger intracellular acidification in the course of ischemia thereby protecting the heart from ischemic damage. The aim of our study was to find out (1) whether in the course of ischemia areas become electrically silent, (2) whether this is enhanced by the Na+/H+-exchange inhibitor cariporide (4-Isopropyl-3-methylsulfonylbenzoyl-guanidine; Hoe 642) and whether cariporide has protective effects. Therefore, we submitted isolated rabbit hearts, perfused according to the Langendorff technique to regional ischemia (LAD occlusion) for 30 min followed by 30 min reperfusion with (n=7) or without (n=7) pre-treatment with 1 microM cariporide. Under these conditions 256-channel epicardial potential mapping was carried out. Under non-ischemic conditions cariporide did not alter any of the parameters under observation. We found that ischemia led to marked alterations of the activation pattern, to action potential shortening and a marked increase in the dispersion of refractoriness. In the ischemic region there was a significant ST deviation from the isoelectrical line (control 32+/-10; 30 min ischemia: 290+/-35 arbitrary units [a.u.]). This was markedly reduced by cariporide (control 39+/-10; 30 min ischemia: 170+/-25 a.u.). The increase in dispersion by ischemia (by 50+/-5 ms) was significantly counteracted by cariporide (increased dispersion by 20+/-4 ms). In a similar way the alteration of the activation pattern was antagonized. Under the influence of cariporide we found a lower increase in the left ventricular enddiastolic pressure, and a significantly slower recovery of the action potential duration. After 30 min of ischemia 24+/-5 (control series) 24.5+/-5 mm2 (cariporide) became electrically silent. In a second series of experiments the incidence of arrhythmia was assessed: we found ventricular fibrillation in 6/7 untreated control hearts and in 4/7 cariporide treated hearts. In a third series of experiments we determined the intracellular [ATP] after 30 min of LAD occlusion using a histochemical method. We observed a decrease in [ATP] in the ischemic region as compared to the non-ischemic right ventricular wall, which was less pronounced in cariporide-treated hearts. Thus, we conclude that (1) cariporide protects the heart from ischemic damage and (2) at least under these conditions an enlargement of the electrically silent area did not occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.