Abstract

The transverse stress has an important effect on the biaxial fatigue crack behavior. However, the experimental evidence has provided conflicting indications: it is sometimes considered to increase, decrease or have no effect. These complex phenomena cannot be rationally explained by the existing mechanical models. The effect of the transverse stress on the fatigue crack growth behavior is still one of the most puzzling questions in biaxial fatigue. Physically, this effect is a transverse stress induced plasticity phenomenon. In this paper, a plasticity-corrected stress intensity factor (PC-SIF) is proposed to describe the effect of transverse stress on biaxial fatigue. By use of this new crack driving force some important phenomena associated with transverse stress are predicted. Comparisons with experimental results showed that the PC-SIF as an effective mechanical parameter is capable of predicting the effects of the crack length, the stress level, cyclic stress ratio, biaxial stress ratio and phase difference on the biaxial fatigue crack growth. Consequently, the alleged conflicting experimental results have been rationally explained by the PC-SIF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call