Abstract

Acceleration of ultrathin foils by the laser radiation pressure promises a compact alternative to the conventional ion sources. Among the challenges on the way to practical realization, one fundamental is a strong transverse plasma instability, which develops density perturbations and breaks the acceleration. In this Letter, we develop a theoretical model supported by three-dimensional numerical simulations to explain the transverse instability growth from noise to wave breaking and its crucial effect on stopping the acceleration. The wave-broken nonlinear mode triggers rapid stochastic heating that finally explodes the target. Possible paths to mitigate this problem for getting efficient ion acceleration are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call