Abstract

Many distribution models developed to predict the presence/absence of invasive alien species need to be fitted to a training dataset before practical use. The training dataset is characterized by the number of recorded presences/absences and by their geographical locations. The aim of this paper is to study the effect of the training dataset characteristics on model performance and to compare the relative importance of three factors influencing model predictive capability; size of training dataset, stage of the biological invasion, and choice of input variables. Nine models were assessed for their ability to predict the distribution of the western corn rootworm, Diabrotica virgifera virgifera, a major pest of corn in North America that has recently invaded Europe. Twenty-six training datasets of various sizes (from 10 to 428 presence records) corresponding to two different stages of invasion (1955 and 1980) and three sets of input bioclimatic variables (19 variables, six variables selected using information on insect biology, and three linear combinations of 19 variables derived from Principal Component Analysis) were considered. The models were fitted to each training dataset in turn and their performance was assessed using independent data from North America and Europe. The models were ranked according to the area under the Receiver Operating Characteristic curve and the likelihood ratio. Model performance was highly sensitive to the geographical area used for calibration; most of the models performed poorly when fitted to a restricted area corresponding to an early stage of the invasion. Our results also showed that Principal Component Analysis was useful in reducing the number of model input variables for the models that performed poorly with 19 input variables. DOMAIN, Environmental Distance, MAXENT, and Envelope Score were the most accurate models but all the models tested in this study led to a substantial rate of mis-classification.

Highlights

  • Since the 1950’s, biological invasions have increased due to an intensification of global trade [1], [2], [3]

  • Peterson and Vieglais [9] and Peterson [8] explored the ability of species distribution models (SDMs) to characterize the climatic conditions that are suitable for invasive alien species and to identify new areas where these species could establish

  • Removing the highly correlated bioclimatic variables and replacing them with the three uncorrelated linear combinations reduced the total variance explained by the bioclimatic variables by only 16.5%

Read more

Summary

Introduction

Since the 1950’s, biological invasions have increased due to an intensification of global trade [1], [2], [3]. Species distribution models (SDMs) or ecological niche models provide a basis for predicting the distribution potential of invasive species in regions other than their native ranges [8]. Peterson and Vieglais [9] and Peterson [8] explored the ability of species distribution models (SDMs) to characterize the climatic conditions that are suitable for invasive alien species and to identify new areas where these species could establish. They concluded that these models provide proactive, predictive, and quantitative tools for pest risk analysis (PRA). SDMs can be coupled to climate change models to predict how the geographic ranges of species will shift as anthropogenic climate change proceeds [10], [11]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.