Abstract

Three-dimensional vortical flow structures and velocity fluctuation near the rotor tip in an axial flow fan having two different tip clearances have been investigated by experimental analysis using a rotating hot wire probe and a numerical simulation. It is found that a tip leakage vortex is observed in the blade passage, which has a major role near the rotor tip. The tip leakage vortex formed close to the leading edge of the blade tip on suction side grows in the streamwise direction, and forms a local recirculation region resulting from a vortex breakdown inside the blade passage. The recirculation region is enlarged by increasing the tip clearance. The larger recirculation region induces the acceleration of the through flow, thus resulting in the increase of the broadband noise. High velocity fluctuation is observed at the interference region between the tip leakage vortex and the through flow in the flow field where the tip leakage vortex is tightly rolled up without its breakdown. Near the casing wall, a discrete frequency is formed between tip leakage vortex core and rotor trailing edge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.