Abstract
Amperometric glucose sensors have been fabricated with glucose oxidase (GOx) immobilized on ZnO nanotubes (ZnONTs) by physical adsorption. The ZnONTs were formed through selective dissolution of ZnO nanorods (ZnONRs) which were hydrothermally synthesized on Au cylindrical spiral (AuCS) electrodes. With the etching temperature regulated, the surface morphologies of the ZnONT arrays were tailored and their effects on the performance of the corresponding glucose sensors were investigated. It is found that at 65°C the as-prepared ZnONT arrays show a Gaussian rough surface with larger surface area and better hydrophilicity, and have an effective solid–liquid interface with GOx solution, which further results in desirable GOx immobilization. Therefore favorable performance of the ZnONT-based glucose sensor was obtained, such as the sensitivity 2.63 μA/(mMcm2), linear range 0–6.5mM, low detection limit 8μM (S/N=3) and Michaelis-Menten constant 5.24mM, which are superior to that of the ZnONR-based one. Moreover, the ZnONT-based glucose sensor exhibits good long-term stability, and excellent anti-interference ability to uric acid and ascorbic acid. The results can also be used for the performance optimization and the process standardization of other ZnONT-based amperometric biosensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.