Abstract

Calcium phosphate (CaP) compounds, the main inorganic constituent of mammalian bone tissues, are believed to support bone precursor cell growth and osteogenic differentiation. Chitosan, a deacetylated derivative of chitin, is a versatile biopolymer to offer broad possibilities for cell-based tissue engineering. In the present study, different scales of CaP crystals on chitosan membranes were prepared for culture of human mesenchymal stem cells (hMSCs) in vitro. A series of aqueous CaP suspensions with different concentrations were mixed with chitosan solution and chitosan/calcium phosphate (C/CaP) films were fabricated by the solvent-casting method. With different weight ratios of CaP in chitosan solution, the various surface characteristics of nano-amorphous (C/CaP 0.1), nano-crystalline (C/CaP 0.5) and micro-particle (C/CaP 2) CaP compounds were examined by scanning electron microscopy and electron dispersion spectroscopy. X-ray diffraction on micro-particles of CaP indicated the formation of crystalline hydroxyapatite. The behavior of hMSCs, including proliferation, cell spreading and osteogenic differentiation, was studied on the C/CaP films. In basal culture medium, the incorporation of CaP into chitosan films could promote the proliferation of hMSCs. The C/CaP 0.5 film with connected CaP nano-crystals had better cellular viability. The fluorescence microscope images at 14 days of culture revealed extensive networks of F-actin filaments of hMSCs on chitosan, C/CaP 0.1 and C/CaP 0.5 films. The cellular morphology on C/CaP 2 film with discrete CaP micro-particles was partly restrained. In osteogenic medium, the alkaline phosphatase (ALP) activity of hMSCs increased and showed the process of osteogenic differentiation. The ALP levels on C/CaP 2 film were higher than those on C/CaP 0.1 and C/CaP 0.5 films. These results demonstrated that the crystallinity and topography of CaP on chitosan membranes could modulate the behaviors of cultured hMSCs in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.