Abstract

MoS2 and Ni-promoted MoS2 catalysts supported on γ-Al2O3, siliceous SBA-15, and Zr- and Ti-modified SBA-15 were explored for the simultaneous hydrodesulfurization (HDS) of dibenzothiophene (DBT) and hydrodenitrogenation (HDN) of o-propylaniline (OPA). In all cases, OPA reacted preferentially via initial hydrogenation, and DBT was converted through direct sulfur removal. HDN and HDS activities of MoS2 catalysts are determined by the dispersion of the sulfide phase. Ni promotion increased its dispersion and activity for DBT HDS and also increased the rate of HDN via enhancing the rate of hydrogenation. On nonpromoted MoS2 catalysts, HDS was strongly inhibited by NH3, and the addition of Ni dramatically reduced this inhibiting effect. The conclusion is that HDS is proportional to the concentration of Mo and Ni on the edges of sulfide particles. In contrast, the direct hydrodenitrogenation of OPA occurs only on accessible Mo cations and, hence, decreases with increasing Ni substitution. The nature of the support influences the dispersion of the nonpromoted catalysts as well as the decoration degree of Ni on the edges of the Ni–Mo–S phase. Furthermore, the acidity of the support influences the acidity of the supported sulfide phase, which may play an important role in HDN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.