Abstract

ABSTRACTWe investigated the effects of the substrate temperature (Ts) on the crystallization and the development of texture of Mn-Zn ferrite thin films on SiO2/Si (100) under ion bombardment during ion beam sputtering. As-deposited films showed ferrimagnetic properties in spite of their crystallographic structure of wustite. The crystallographic structure of as-deposited films changed from (111) wustite structure to (222) spinel structure as oxygen partial pressure increased. The (222) preferred orientation seems to originate from oxygen-deficit ambient and preferential resputtering of oxygen ions in films during sputtering. The interplanar distance of the films deposited without oxygen flow decreased with increasing Ts due to release of compressive stress. The saturation Magnetization (Ms) of the film had maximum value at about 275°C, while the resistivity was almost of the same value irrespective of Ts. The unusual fact that crystallization and preferred orientation were less progressed at higher Ts was discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call