Abstract

For a rhodium ion-modified TiO2 (Rh3+/TiO2) photocatalyst responding to visible light, control of the structure of the Rh3+ modifier and effects of the structures of the Rh3+ modifier on photocatalytic activities were examined. A TiO2 support was pre-calcined to maintain crystallinity and specific surface area during post-calcination, and the structure of the Rh3+ modifier for Rh3+/TiO2 was changed by post-calcination without causing changes in the crystallinity and specific surface area of the TiO2 support. In mineralization of acetone under irradiation of visible light, the photocatalytic activities of the post-calcined Rh3+/TiO2 showed a volcano-like tendency as a function of post-calcination temperature. The results of this study showed that an atomically isolated structure of the Rh3+ modifier was preferable for high activities and that aggregation of the Rh species led to a decrease in the activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.