Abstract

In this paper, the role that the site dynamic characteristics play in soil–structure interaction is studied on a simple model in which the site is represented as a soil layer over bedrock (half-space), and using the indirect boundary-element method (IBEM). For the purpose of comparison with published analytical solutions, the structure is represented as a shear wall supported by a semi-circular rigid foundation, subjected to incident plane SH waves. The accuracy of the method is verified, numerical results are analyzed, and the model response is compared with earthquake observations at the Hollywood Storage Building. It is shown that the effects of dynamic soil–structure interaction may become more significant near the characteristic frequencies of the site, and that the resonance of the system shifts to lower frequencies. The thickness of the soil layer, the stiffness of the bedrock, and the mass and the stiffness of the superstructure all influence the values of the system frequencies and system amplitudes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.