Abstract

(+/-)3,4-Methylenedioxymethamphetamine (MDMA) releases dopamine and serotonin in vivo and stimulates locomotor activity. Previous work demonstrated that MDMA-stimulated dopamine release could be reduced by the selective 5-HT2A receptor antagonist [R-(+)-a- (2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinem ethanol] (MDL 100,907). In the present study MDL 100,907 significantly reduced MDMA-stimulated locomotion without affecting basal levels of locomotion. Other agents with 5-HT2A antagonist activity (ritanserin, clozapine, MDL 28,133A, or methiothepin), as well as agents that block 5-HT1A-(propranolol), D2-(haloperidol), or D1 receptors (SCH 23390) also reduced MDMA-stimulated locomotion. Intraventricularly administered 5,7-dihydroxytryptamine decreased regional 5-HT levels and attenuated MDMA-stimulated locomotion. These data support the conclusion that serotonin released onto 5-HT2A receptors contributes to MDMA-stimulated locomotion and suggest that MDMA-stimulated locomotion may be useful as an in vivo behavioral measure of 5-HT2A antagonism. The data also support previous reports of contributions of 5-HT1A, D1 and D2 receptors to MDMA-stimulated locomotion. A preliminary time-course analysis indicating time-dependent contributions of different receptors to MDMA-stimulated locomotion suggests the potential utility of this model for characterizing potential atypical antipsychotic compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.