Abstract

G protein-coupled receptors (GPCR) signal not only through heterotrimeric G proteins, but also through alternate pathways. Thus, dopamine D2 receptors in the striatum signal through Gαi/o and also by promoting formation of a multi-protein complex containing β-arrestin2, protein phosphatase 2A (PP2A), and Akt in order to dephosphorylate Akt. Lithium, on the other hand, disrupts this complex to increase Akt phosphorylation. Rhes is a striatally enriched GTP-binding protein that has been shown to inhibit dopamine receptor-mediated behavior and signaling through heterotrimeric G proteins. Therefore, our objective was to test whether Rhes similarly affects signaling through the Akt/GSK3 pathway in the striatum. Rhes−/− mice showed basally increased Akt and GSK3β phosphorylation relative to rhes+/+ mice that was not further enhanced by lithium treatment. Furthermore, they responded to the D1/D2 agonist apomorphine with increased Akt and GSK3 phosphorylation. Co-immunoprecipitation experiments revealed that apomorphine treatment recruits PP 2A-C to Akt in both rhes+/+ and rhes−/− mice. Lithium did not disrupt their interaction in rhes−/− mice as there was little basal interaction. Rhes co-immunoprecipitated with β-arrestins, suggesting that it is integral to the multi-protein complex. Thus, Rhes is necessary for Akt dephosphorylation by the striatal multi-protein complex, and in its absence, a lithium-treated phenotype results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.