Abstract

Simple SummaryLactobacillus delbrueckii subsp. bulgaricus (LDB) is an important candidate for antibiotic replacement in pig production. In this study, LDB and antibiotic diets were fed to the LDB and antibiotic groups of female growing-finishing pigs, respectively. 16S rRNA sequencing was used to identify different microbiota. Liquid chromatography-mass spectrometry-based non-targeted metabolomics approaches were used to identify different metabolites. The co-occurrence network of the fecal microbiota and metabolite was analyzed. The results contain information on pig growth performance, microbiota data, metabolite data and co-occurrence networks, supporting the possibility of LDB as an antibiotics replacement in pig production.Lactobacillus delbrueckii subsp. bulgaricus (LDB) is an approved feed additive on the Chinese ‘Approved Feed Additives’ list. However, the possibility of LDB as an antibiotic replacement remains unclear. Particularly, the effect of LDB on microbiota and metabolites in the gastrointestinal tract (GIT) requires further explanation. This study aimed to identify the microbiota and metabolites present in fecal samples and investigate the relationship between the microbiota and metabolites to evaluate the potential of LDB as an antibiotic replacement in pig production. A total of 42 female growing-finishing pigs were randomly allocated into the antibiotic group (basal diet + 75 mg/kg aureomycin) and LDB (basal diet + 3.0 × 109 cfu/kg LDB) groups. Fecal samples were collected on days 0 and 30. Growth performance was recorded and assessed. 16S rRNA sequencing and liquid chromatography-mass spectrometry-based non-targeted metabolomics approaches were used to analyze the differences in microbiota and metabolites. Associations between the differences were calculated using Spearman correlations with the Benjamini–Hochberg adjustment. The LDB diet had no adverse effect on feed efficiency but slightly enhanced the average daily weight gain and average daily feed intake (p > 0.05). The diet supplemented with LDB increased Lactobacillus abundance and decreased that of Prevotellaceae_NK3B31_group spp. Dietary-supplemented LDB enhanced the concentrations of pyridoxine, tyramine, D-(+)-pyroglutamic acid, hypoxanthine, putrescine and 5-hydroxyindole-3-acetic acid and decreased the lithocholic acid concentration. The Lactobacillus networks (Lactobacillus, Peptococcus, Ruminococcaceae_UCG-004, Escherichia-Shigella, acetophenone, tyramine, putrescine, N-methylisopelletierine, N1-acetylspermine) and Prevotellaceae_NK3B31_group networks (Prevotellaceae_NK3B31_group, Treponema_2, monolaurin, penciclovir, N-(5-acetamidopentyl)acetamide, glycerol 3-phosphate) were the most important in the LDB effect on pig GIT health in our study. These findings indicate that LDB may regulate GIT function through the Lactobacillus and Prevotellaceae_NK3B31_group networks. However, our results were restrained to fecal samples of female growing-finishing pigs; gender, growth stages, breeds and other factors should be considered to comprehensively assess LDB as an antibiotic replacement in pig production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.