Abstract
Grain boundary engineering (GBE) was carried out on a nickel-based alloy (GH3535, Ni-16Mo-7Cr-4Fe), which intrinsically has many strings of primary molybdenum carbides. The strings induce inhomogeneous grain size distributions and increase the difficulties in achieving a GBE microstructure. In this work, the effects of the primary carbide distribution on the grain boundary network (GBN) evolution were investigated. A higher proportion of Σ3n grain boundaries (GBs) associated with extensive multiple twinning events was achieved in the specimen with more dispersive and finer primary carbides, which are the results of cross-rolling, i.e., cold rolling with a changed direction. In a starting microstructure with many strings of primary carbides, the dense and frequent occurrence of particle-stimulated nucleation (PSN) around the carbides induced more general high-angle GBs into the GBN, and the inhibition of GB migrations by the carbide strings suppressed the formation of large-sized highly twinned grain clusters. As a consequence, the Σ3n GBs could not be effectively enhanced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.