Abstract
The use of soy-based products in pig diets had raised concerns regarding the reproductive toxicity of genistein, the predominant isoflavone in soybeans. Genistein was reported to exhibit weak estrogenic activity but its mechanism of action is not fully recognized. The aim of the study was to examine the in vitro effects of genistein on (1) progesterone (P4) and estradiol (E2) secretion by porcine granulosa cells harvested from medium follicles, (2) the viability of cultured granulosa cells, and (3) the mRNA and protein expression of estrogen receptors α and β (ERα and ERβ) in these cells. In addition, to verify the role of protein tyrosine kinase (PTK)–dependent mechanisms possibly involved in genistein biological action, we tested the effects of lavendustin C, the nonsteroidal PTK inhibitor, on granulosa cell steroidogenesis. We found that genistein inhibited (P < 0.05) basal P4 secretion by granulosa cells harvested from medium follicles of pigs. In contrast, lavendustin C did not affect basal P4 secretion by the cells. Moreover, genistein increased (P < 0.05) basal granulosal secretion of E2. In contrast, lavendustin C did not alter basal E2 secretion by porcine granulosa cells. In addition, we demonstrated that genistein increased mRNA and protein expression of ERβ (P < 0.05) in the examined cells. The expression of ERα mRNA was not affected by genistein and ERα protein was not detected in the cultured granulosa cells of pigs. In summary, the genistein action on follicular steroidogenesis in pigs involved changes in the granulosal expression of ERβ. However, the genistein action on P4 and E2 production by granulosa cells harvested from medium follicles did not seem to be associated with PTK.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.