Abstract

Phytoestrogens, which have structural similarity to 17beta-estradiol, have been reported to act as agonists/antagonists of estrogen in animals and humans. Estrogen is known to have an important role in maintaining bone mass, because the concentration of serum estrogen decreases after menopause and the estrogen deficiency causes bone loss. In this study, we investigated the effects of coumestrol and other phytoestrogens on osteoclast differentiation using estrogen receptor alpha-transfected RAW264.7 (RAW264.7-ERalpha) cells. When the cells were cultured with the receptor activator of nuclear factor kappa B-ligand (RANKL), both formation of tartrate-resistant acid phosphatase (TRAP) positive multinucleated cells and TRAP activity were increased compared with control cells that were cultured in the absence of RANKL. Coumestrol decreased RANKL-induced formation of TRAP-positive multinucleated cells and TRAP activity dose-dependently. RANKL-stimulated RAW264.7-ERalpha cells formed resorption pits on calcium phosphate films and the pit formation was inhibited by coumestrol in a dose-dependent manner. RT-PCR analyses revealed that coumestrol (10 microM) decreased mRNA levels of calcitonin receptor (CTR) and matrix metalloproteinase-9 (MMP9) in RANKL-treated cells. In addition, pretreatment of coumestrol decreased RANKL-induced phosphorylation of extracellular signal-regulated kinases/p44/42 (ERK1/2). These results suggest that coumestrol has an inhibitory effect on the differentiation of osteoclasts, at least partially via ERK1/2 pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.