Abstract

The effects of working memory (WM) capacity on mathematical ability are well known. This relationship is seen mainly for the capacity of visuospatial WM, while the capacity of the phonological loop of WM, which is associated with processing sound and speech information, has been suggested to have a minor effect on mathematical ability in adults. Nonetheless, involvement of the language neural networks in mathematical thought remains controversial. We have studied the effects of the capacity of the phonological loop of WM on the rate and correctness of solution of mathematical and verbal tasks in young, healthy, right-handed volunteers who either had higher education or were students at institutions teaching mathematics and humanities. Subjects in the mathematics group (N = 10) solved all tasks with measures of solution correctness (CA) and response time (RT) which were significantly better than values for subjects of the humanities group (N = 10). The capacity of the phonological loop of WM showed no difference between the two groups but had different effects on CA and RT values for tasks in mathematicians and humanities specialists. Spearman correlation analysis for each group separately showed that the capacity of WM had positive effects on CA for all mathematical tasks only in the mathematicians group, where it had no effect on RT, while the reverse tendency was seen in the humanities group. The capacity of WM in the mathematicians group correlated inversely with RT for logical tasks on arithmetic sequences. Our results provide indirect evidence that WM in the verbal domain can influence mathematical ability, especially when tasks require the involvement of logical thought.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call