Abstract

Worldwide, rates of metabolic diseases are rapidly increasing and environmental exposure to pesticides, pollutants and/or other chemicals may play a role. Reductions in Brown Adipose Tissue (BAT) thermogenesis, mediated in part by uncoupling protein 1 (Ucp1), are associated with metabolic diseases. In the current study, we investigated whether the pesticide deltamethrin (0.01-1mg/kg bw/day) incorporated into a high-fat diet and fed to mice housed at either room temperature (21°C) or thermoneutrality (29°C) would suppress BAT activity and accelerate the development of metabolic disease. Importantly, thermoneutrality allows for more accurate modeling of human metabolic disease. We found that, 0.01mg/kg bw/day of deltamethrin induced weight loss, improved insulin sensitivity and increased energy expenditure, effects that were associated with increases in physical activity. In contrast, exposure to 0.1 and 1mg/kg bw/day deltamethrin had no effect on any of the parameters examined. Deltamethrin treatment in mice did not alter molecular markers of BAT thermogenesis, despite observing suppression of UCP1 expression in cultured brown adipocytes. These data indicate that while deltamethrin inhibits UCP1 expression in vitro, 16wks exposure does not alter BAT thermogenesis markers nor exacerbates the development of obesity and insulin resistance in mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.