Abstract
We successfully manufactured 12-filament rod-in-tube Nb3Sn wires with oxide nanoparticles formed by the internal oxidation method. We employed Nb-7.5 wt%Ta-1 wt%Zr and Nb-7.5 wt%Ta-2 wt% Hf alloys along with oxygen sources (OSs) in two different configurations—in the core of Nb filaments (coreOS) and at the boundary between the filaments and the Cu tube (annularOS)—to assess the influence of the OS layout on the superconducting properties and grain size. The simultaneous presence of the OS and of Hf or Zr reduced the average Nb3Sn grain size to around 50 nm, leading to an enhancement of the layer critical current density (Jc ) up to 3000 A mm−2 at 4.2 K and 16 T for the Hf-annularOS wire. Samples manufactured with an OS show a shift toward higher reduced magnetic fields of the position of the maximum in pinning-force density, this shift being more pronounced when SnO2 is added in the annularOS configuration, and for the Hf-containing samples. This enhanced pinning at higher magnetic field is beneficial for high-field magnet applications. Moreover, we measured a very high upper critical field, reaching 29.3 T at 4.2 K in the Hf-annularOS samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.