Abstract

In this study, a mathematical model for the supersonic condensate flow of natural gas to understand its condensation process in a supersonic separator has been proposed. The effects of export back pressure, inlet temperature, and inlet pressure on the condensation parameters were investigated. The results indicate that the condensation position moves forward with the increase in the inlet pressure and the decrease in the inlet temperature. A method for determining the optimal range of operating parameters (export back pressure, inlet temperature, and inlet pressure) for the supersonic separator is proposed. Within the optimal back pressure range, the region of extreme Mach number in the device should be at the inlet of the straight pipe section after the separation gap, and extreme value distribution areas of low temperature, condensation nucleation, and humidity should be between the nozzle expansion section and the inlet of the straight pipe section. It is important to choose a higher temperature among the optimal values as the inlet temperature and also ensure that the optimal inlet pressure is not higher than the pressure corresponding to the humidity inflection point. At the optimal inlet pressure, the maximum humidity distribution area should be behind the supersonic nozzle expansion section and in front of the inlet of the straight pipe section.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call