Abstract

Effects of carbon source in single-source ZrC-based liquid precursors on the properties of the precursors and precursor-derived nano ZrC powders were investigated. The liquid precursors were prepared by directly blending and heating zirconium n-butoxide with either 2,4-pentanedione, benzoyl acetone or 1,3-diphenyl-1,3-propanedione additives which have the same chemical composition and structure except for the number of benzene rings (0, 1 and 2, respectively) in order to control the carbon content in the precursors. The ceramic yield of the precursor decreased as the number of benzene rings in the precursors increased. The stability of the precursors in air and the carbon content of the ceramic powder increased when using 1,3-diphenyl-1,3-propanedione additive. X-ray pure nano zirconium carbide powders with ultra-fine size (30 nm), isotropic shape and homogeneous particle size distribution were synthesized from the liquid precursors containing two benzene rings in the structure. Compared with ZrC powders derived from the precursors containing zero or one benzene ring, the powder from the precursor containing two benzene rings was finer and more homogeneous in size distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call