Abstract

A new triazole derivative, R76713 (6-[(4-chlorophenyl)(1 H-1,2,4-triazol-1-yl)methyl]-1-methyl-1 H-benzotriazole), was recently shown to inhibit aromatase selectively without affecting other steroid-metabolizing enzymes and without interacting with estrogen, progestin, or androgen receptors. This compound was tested for its capacity to intefere with the induction of copulatory behavior by testosterone (T) in castrated Japanese quail ( Coturnix coturnix japonica). In a first experiment, R76713 inhibited (range 0.01 to 1 mg/kg) the activation of sexual behavior by T silastic implants and hypothalamic aromatase activity in castrated male quail in a dose-dependent manner. The 5α- and 5β- reductases of T were not systematically affected. Stereotaxic implantation of R76713 in the medial preoptic area similarly blocked the behavior activated by systemic treatment with T, demonstrating that central aromatization of androgen is implicated in the activation of behavior. These inhibiting effects of R76713 on behavior were observed when implants were placed in the medial part of the nucleus preopticus medialis, confirming the implication of this brain area in the control of male copulatory behavior. Finally, the behavioral inhibition produced by R76713 could be reversed by simultaneous treatment with a dose of estradiol, which was not behaviorally effective by itself. This suggests that the behavioral deficit induced by the inhibitor was specifically due to the suppression of estrogen production. This also shows that the activation of copulatory behavior probably results from the interaction of androgens and estrogens at the brain level, as the two treatments separately providing these hormonal stimuli (T with the aromatase inhibitor on one hand and a low dose of estradiol on the other hand) had almost no behavioral effects but they synergized to activate copulation when given concurrently. These data confirm the critical role of preoptic aromatase in the activation of reproductive behavior and demonstrate that R76713 is a useful tool for the in vivo study of estrogen-dependent processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.