Abstract
BackgroundSurfactant replacement therapy is the standard of care for the prevention and treatment of neonatal respiratory distress syndrome. New generation synthetic surfactants represent a promising alternative to animal-derived surfactants. CHF5633, a new generation reconstituted synthetic surfactant containing SP-B and SP-C analogs and two synthetic phospholipids has demonstrated biophysical effectiveness in vitro and in vivo. While several surfactant preparations have previously been ascribed immunomodulatory capacities, in vitro data on immunomodulation by CHF5633 are limited, so far. Our study aimed to investigate pro- and anti-inflammatory effects of CHF5633 on native and LPS-stimulated human adult monocytes.MethodsHighly purified adult CD14+ cells, either native or simultaneously stimulated with LPS, were exposed to CHF5633, its components, or poractant alfa (Curosurf®). Subsequent expression of TNF-α, IL-1β, IL-8 and IL-10 mRNA was quantified by real-time quantitative PCR, corresponding intracellular cytokine synthesis was analyzed by flow cytometry. Potential effects on TLR2 and TLR4 mRNA and protein expression were monitored by qPCR and flow cytometry.ResultsNeither CHF5633 nor any of its components induced inflammation or apoptosis in native adult CD14+ monocytes. Moreover, LPS-induced pro-inflammatory responses were not aggravated by simultaneous exposure of monocytes to CHF5633 or its components. In LPS-stimulated monocytes, exposure to CHF5633 led to a significant decrease in TNF-α mRNA (0.57 ± 0.23-fold, p = 0.043 at 4h; 0.56 ± 0.27-fold, p = 0.042 at 14h). Reduction of LPS-induced IL-1β mRNA expression was not significant (0.73 ± 0.16, p = 0.17 at 4h). LPS-induced IL-8 and IL-10 mRNA and protein expression were unaffected by CHF5633. For all cytokines, the observed CHF5633 effects paralleled a Curosurf®-induced modulation of cytokine response. TLR2 and TLR4 mRNA and protein expression were not affected by CHF5633 and Curosurf®, neither in native nor in LPS-stimulated adult monocytes.ConclusionThe new generation reconstituted synthetic surfactant CHF5633 was tested for potential immunomodulation on native and LPS-activated adult human monocytes. Our data confirm that CHF5633 does not exert unintended pro-inflammatory effects in both settings. On the contrary, CHF5633 significantly suppressed TNF-α mRNA expression in LPS-stimulated adult monocytes, indicating potential anti-inflammatory effects.
Highlights
Surfactant replacement therapy using exogenous surfactant preparations derived from bovine or porcine lungs has significantly improved the outcome in respiratory distress syndrome (RDS) in preterm infants and has become the standard of care for the prevention and treatment of RDS [1,2,3,4,5,6,7,8]
LPS-stimulated monocytes, exposure to CHF5633 led to a significant decrease in TNF-α mRNA (0.57 ± 0.23-fold, p = 0.043 at 4h; 0.56 ± 0.27-fold, p = 0.042 at 14h)
TLR2 and TLR4 mRNA and protein expression were not affected by CHF5633 and Curosurf1, neither in native nor in LPS-stimulated adult monocytes
Summary
Surfactant replacement therapy using exogenous surfactant preparations derived from bovine or porcine lungs has significantly improved the outcome in respiratory distress syndrome (RDS) in preterm infants and has become the standard of care for the prevention and treatment of RDS [1,2,3,4,5,6,7,8]. A number of animal-derived surfactants are available, isolated mainly from porcine or bovine lungs [6,8] These preparations containing variable amounts of lipids, mainly dipalmitoylphosphatidylcholine (DPPC), and residual hydrophobic surfactant proteins (SP)-B and SP-C, are very effective, but supplies are limited. Our study aimed to investigate pro- and anti-inflammatory effects of CHF5633 on native and LPS-stimulated human adult monocytes
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.